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 In abstract algebra, one is concerned about the structures that particular sets have under 

some binary operation.  For example, the set of planar rotations of a square form a group under 

the operation of function composition, where the functions are the rotations (such as quarter-

turns and reflections).  However, some sets, such as integers (including congruence classes), 

matrices, and polynomials are endowed with more than one operation.  In this paper, we will 

examine the structure of rings and analyze the set of Gaussian integers – the set of complex 

numbers that lie on lattice points.  Furthermore, we will see how Gaussian integers can be used 

to prove results that originate from the ordinary integers. 

 Before introducing the Gaussian integers, one must understand the concept of the 

algebraic structure known as a ring.  The study of rings can be related to Fermat’s Last Theorem, 

which states that the Diophantine equation 𝑥𝑛 + 𝑦𝑛 = 𝑧𝑛 has no solutions when 𝑛 ≥ 3.  

Leonhard Euler began work on the case when 𝑛 = 3.  In his attempts, Euler extended the rules of 

addition and multiplication in the integers to numbers of the form 𝑎 + 𝑏√−3, where a and b are 

integers.  This set forms a ring, but Euler was not concerned about their algebraic structure.  In 

1847, the mathematician Gabriel Lamé claimed he had a solution for Fermat’s Last Theorem, but 

Joseph Liouville argued that any proof would rely on the property of unique factorization of 

primes.  Here, the primes would not necessarily be typical integers, but numbers similar to those 

that Euler had worked on.  Similar work continued until Richard Dedekind began analyzing 

complex numbers similar to Euler.  Dedekind stated the concept of “ideal complex numbers,” 

and, more generally, ring ideals.  The ideal, to Dedekind, was characterized by closure under 

certain operations.  The concept of prime numbers was extended by Dedekind to prime ideals, 

abstracting the property of irreducibility.  Although many concepts of rings were thought of by 

Dedekind, the word “ring” was not coined by him.  David Hilbert, another German 
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mathematician, used the word Zahlring, meaning “number ring,” to describe the structures that 

Dedekind considered.  While much of early ring theory branched from number theory, other 

mathematicians, such as Benjamin Peirce, noted that rings do not have to be composed of 

numerical objects.  For example, he noted that Arthur Cayley’s matrices satisfied the modern 

ring axioms (O'Connor & Robertson, 2004).  While ring theory started as an extension of number 

theory, it holds a connection to the study of algebra as a whole.  It may be of interest, then, to 

study not only the group structure of particular sets of objects such as integers and matrices, but 

also their ring structure.  

Typically, students of abstract algebra first learn about groups, and then proceed to rings.  

Students are familiar with some notable groups – the group of integers modulo n, the dihedral 

group of order 2n, and the group of permutations on n symbols, just to name a few.  However, of 

these aforementioned sets, only one is endowed with another natural operation.  The set of 

integers modulo n (which we will now write as Zn) naturally contain a sort of addition and a sort 

of multiplication.  However, when concerned about group structure, only addition is considered.  

It is well known that Zn is an abelian group under addition, but when multiplication is considered 

as an operation, the same set does not form a group.  A new algebraic structure can be built using 

the same set and the operations of addition and multiplication modulo n.  This new structure is 

called a ring.  Gallian’s text on abstract algebra (Contemporary Abstract Algebra, 2012, p. 245) 

lists the ring axioms by first showing the group structure under addition (that is, associativity, 

existence of inverses and identities, and the commutative nature), then the two properties a ring 

must possess under multiplication.  The two multiplicative properties are recognized as 

associative multiplication and distribution of multiplication over addition.  In some familiar 

rings, such as the integers and the real numbers, a multiplicative identity, named a unity 
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according to Gallian’s text (Contemporary Abstract Algebra, 2012, p. 246), may exist within the 

ring.  However, other books require that a ring possess a unity (Sethuraman, 1996, p. 33).  The 

existence of a unity may then be listed as an axiom.  Rings can also be classified as commutative 

if the operation of multiplication within the ring is commutative.  Special elements called units 

may exist in rings if there are multiplicative inverses (Gallian, p. 246).  The usual properties and 

notions of integers can carry over to other rings of different elements, and so one can make 

connections to the ring of integers. 

 As is the case with groups, one may be interested of subsets of rings.  In particular, one 

may wish to know if a certain subset of a ring also forms a ring under the same operations.  The 

test to see if a subset is indeed a subring is similar to those for subgroups.  Gallian’s subring test 

requires that the subset is closed under subtraction and multiplication, provided the set is not 

empty (Contemporary Abstract Algebra, 2012, p. 248).  However, Sethuraman’s subring test 

requires closure under addition and multiplication, as well as the existence of a unity and 

additive inverses (Rings, Fields, and Vector Spaces, 1996, p. 43).  To justify this, if the additive 

inverse is in a subset S of R, then the ring will be closed under subtraction.  Subrings can explain 

some properties of parent rings, just as subgroups describe parent groups.  For example, the set 

{𝑎 + 𝑏𝑖 ∶ 𝑎, 𝑏 ∈ 𝑍} is a subring of the complex numbers.  Later on, this set, known as the 

Gaussian integers, will be used to describe various results of the ordinary integers. 

 Although the Gaussian integers are complex numbers, they share similar structural 

properties of the integers.  The relationship between the rings Z[i] and Z relies on properties of 

complex numbers and facts of the integers.  To begin, one must first be aware of the norm 

function in Z[i].  Various sources define the norm of a Gaussian integer 𝑎 + 𝑏𝑖 to be 𝑎2 + 𝑏2, 

which is the product of a Gaussian integer with its complex conjugate (Gethner, Wagon, & 
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Wick, 1998).  The use of this norm function opens up doors to prove properties of the Gaussian 

primes.  For example, one can prove a necessary condition for a prime Gaussian integer.  That is, 

there is a way to determine if a Gaussian integer cannot be factored into non-trivial factors, much 

like the ordinary integers.  The following proof is a variation on Keith Conrad’s note on 

Gaussian integers. 

Let 𝛼 be a Gaussian integer, and suppose its norm is a prime number p.  Then, since the 

norm is multiplicative, 𝑁(𝛼) = 𝑁(𝛽)𝑁(𝛾).  (Here, N is the norm function.)  Since the ordinary 

integer p is prime, its only factors are 1 and p itself, so exactly one of 𝑁(𝛽) or 𝑁(𝛾) must be the 

prime p.  Now, if the norm of 𝛽 is 1, then it follows that 𝛽 is a unit (an element with a 

multiplicative inverse).  So, 𝛾 is an element whose norm is prime, and 𝛼 must be a Gaussian 

prime.  (Conrad, p. 12) 

With these properties of primes, one may have questions about the ordinary integers, 

since they belong to the ring of Gaussian integers (when treated as a complex number).  In 

particular, some, not all, ordinary primes are not Gaussian primes.  For example, the ordinary 

prime number 5 can be factored as (2 + 𝑖)(2 − 𝑖).  By the above proof, both 2 + 𝑖 and 2 − 𝑖 are 

Gaussian primes.  On the other hand, 3 is a Gaussian prime, since it cannot be factored into a 

product of Gaussian primes (other than itself and the units ±1 and ±𝑖).  The above proof is one 

condition to find a Gaussian prime.  Another condition, given by Gethner, Wagon, and Wick, 

states that if a Gaussian integer is of the form ±𝑛 or ±𝑛𝑖, then such an integer is prime if and 

only if 𝑛 is a prime whose absolute value is congruent to 3 modulo 4 (A Stroll Through the 

Gaussian Primes, 1998).  Relating the properties of prime numbers to those in Z[i] is key, and is 

the basis for one unsolved problem in mathematics. 
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Aside from their ring structure, the Gaussian integers are used in a variety of applications, 

mainly in algebraic number theory.  These integers can be used to examine Pythagorean triples, 

properties in geometry, and the spread of the Gaussian primes.  The manipulations of complex 

numbers and the Gaussian integers help show results about ordinary integers, and, in the case of 

the gaps between primes, determine if one can travel the complex plane while only stepping on 

Gaussian primes. 

The equation 𝑥2 + 𝑦2 = 𝑧2 is known to many students as the statement of the 

Pythagorean Theorem.  In number theory, it is of interest to solve this equation in the integers.  

The equation can be extended to complex numbers and the Gaussian integers, so it is of interest 

to solve 𝛼2 + 𝛽2 = 𝛾2 in the ring Z[i].  A paper by James T. Cross builds the solution to this 

equation by first extending the concept of divisibility and parity of integers to Z[i].  The 

definition of “even” or “odd” Gaussian integers is based on division by a particular Gaussian 

prime, 1 + 𝑖.  To further the definition of parity, Cross states that this Gaussian prime divides 

any other Gaussian integer “if and only if 𝑥 ≡ 𝑦 (𝑚𝑜𝑑 2).”  That is, both the real and imaginary 

parts of the Gaussian integer must be both even or both odd.  If that is the case, then the Gaussian 

integer is even; otherwise, it is odd (Primitive Pythagorean Triples of Gaussian Integers, 1986).  

To see why a parity definition in Z[i] is needed, one must examine the set of primitive 

Pythagorean triples in the ordinary integers.  In such a triple, exactly one of the elements is even, 

and all entries are pairwise relatively prime.  Similarly, in the Gaussian integers, a primitive 

Pythagorean triple must have exactly one “even” element, and all entries must be pairwise 

relatively prime, at least in Z[i].  By extending the notion of Pythagorean triples to complex 

numbers, one can learn more about the structure of the Gaussian integers and sums of squares. 
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The geometry of complex numbers can be used to prove particular properties of the 

Gaussian integers.  A short paper by Walter Rudin gives a proof of the unique factorization 

property of Z[i] using a geometric argument.  A preliminary lemma is first given, describing that 

a square whose center lies on a circle has at least one vertex in the interior of the circle.  Rudin 

then proceeds to prove the unique factorization of Gaussian integers into primes.  The 

factorization is, however, unique up to arrangement of the primes and their representation 

(Unique Factorization of Gaussian Integers, 1961).  The representation of these primes may 

appear different, since they may be a rotation of 90 degrees of a respective prime in the complex 

plane.  A geometric proof of unique factorization is one way the structure of the complex plane is 

used to show properties of the ring Z[i]. 

Geometry can also be used to show the existence of a division algorithm in the Gaussian 

integers.  Jack S. Calcut uses a geometric argument to show that a division algorithm similar to 

the ordinary integers exists in Z[i], and he uses this to show unique factorization.  First, a 

Gaussian integer 𝑤 is selected and is used to rotate the plane by the argument of 𝑤, which is 

equivalent to multiplying all Gaussian integers by 𝑤.  Next, any Gaussian integer in the original, 

untouched lattice is taken within a certain distance of an integer in the rotated lattice so that the 

norm of the difference of these two complex numbers in minimal.  This procedure can continue 

until a complex “remainder” is obtained whose norm is less than that of the integer in the rotated 

lattice (Gaussian Integers and Arctangent Identities for π, 2009).  This is analogous to how 

division is done in the integers, where the remainder must be selected to be as small as possible.  

Through the geometry of complex numbers, the Gaussian integers can reveal many parallels to 

the ordinary integers. 
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One unsolved problem in mathematics involves the Gaussian primes and how far apart 

they are from each other.  The problem, known as the Gaussian moat problem, asks if it is 

possible for one to find an infinite sequence of Gaussian primes for which the difference between 

terms is bounded.  The problem is also stated as a walk to infinity, using the Gaussian primes as 

stepping stones.  An article by Ellen Gethner gives a basic understanding of the problem.  Posed 

by UCLA mathematician Basil Gordon in 1962, the Gaussian moat problem is one that asks 

about gaps between the primes, in terms of Euclidean distance.  The size of a moat is given by 

the maximum distance between any two primes.  One question in the article asks, “If you keep 

walking forever, will you, every once in a while, have to take longer and longer steps?” (In 

Prime Territory, 1996).  An expanded article by Gethner, along with Stan Wagon and Brian 

Wick, shows more results about the problem.  The problem is reduced to a walk on the line 

within the complex plane.  This line contains two or more distinct Gaussian integers, and it is 

proven that there is another integer on this line so that all Gaussian integers within a particular 

distance of it are composite.  So, there is no line in the complex plane for which one can walk to 

infinity while using the Gaussian primes as stepping stones (A Stroll Through the Gaussian 

Primes, 1998, p. 7).  The unsolved problem eludes mathematicians as they try to learn more 

about the Gaussian integers and the gaps between their irreducible elements. 

In closing, the Gaussian integers are a ring contained within the complex numbers.  Their 

structure allows various questions to be answered about ordinary integers or elements of the ring 

Z[i].  While geometry can connect the Gaussian integers and the ordinary integers, there are still 

mysteries of the prime elements in Z[i].  These integers can still be seen as an extension of the 

ordinary integers, and allow mathematicians to draw more connections to them in algebra and 

number theory. 
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