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One direct application of mathematics in the industrial setting is the need to solve various types

of equations. Many of these equations are deterministic in nature, where the result will be the same

each time. In fields where randomness is present, such as quantitative finance and physics, the task

is now to understand the behavior of the solutions in the average case. In this paper, we describe

a method to numerically solve stochastic differential equations and demonstrate the method with a

relatively simple example.

To begin, we give a brief description of the mechanics of stochastic calculus. An extended

treatment is given in an informal talk given to the Texas A&M University graduate math student

organization [5], with formal treatments given in Kloeden and Platen [1], Øksendal [4], and Kuo

[2]. Our fundamental object will be a Brownian motion, denoted by Bt. This is a stochastic process

that satisfies the following properties:

1. B0 = 0 almost surely.

2. When 0 ≤ s < t, the random variable Bt − Bs is normally distributed with mean 0 and
variance t− s.

3. Bt has independent increments. Given a sequence of times {t1, t2, . . . , tn}, the random vari-
ables Bt1 , Bt2 −Bt1 , . . . , Btn−1 −Btn are independent.

4. Almost every sample path of Bt is continuous.

One tool that will be needed in the stochastic calculus is integration. This is developed by

modifying the Riemann-Stieltjes integral by allowing for the integrator to be a random object.

Thus we are interested when it makes sense to write

∫ b

a

f(t,Xt) dBt
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where Xt is some stochastic process. We can extend this further to when the integrator is not just

a Brownian motion (e.g., a semimartingale), but such a treatment will not be considered here.

The stochastic calculus would not be complete without a variant of the chain rule from the

ordinary calculus. The result below, attributed to Kiyosi Ito, is the main tool in solving stochastic

differential equations.

Theorem 1 (Ito’s Lemma). Let f(t, x) be C2([0,∞)×R). Then the process Xt = f(t, Bt) has the
following “derivative:”

dXt =

(
ft +

1

2
fxx

)
dt+ fx dBt (1)

Equivalently, we may write

Xt = X0 +

∫ t

0

(
fs(s, Bs) +

1

2
fxx(s, Bs)

)
ds+

∫ t

0

fx(s, Bs) dBs (2)

Observe that the statement in equation (2) provides a method of expressing the solution to a

stochastic differential equation as a sum of two integrals - the first is a deterministic integral and

the second is a stochastic integral. This will be fundamental in exactly solving certain stochastic

differential equations and also in developing our numerical scheme for solving these equations.

To motivate the construction of stochastic differential equations, we first consider an exponen-

tial growth model, written in the differential form.

dx = kx dt (3)

x(0) = x0

This equation admits the solution x(t) = x0e
kt. This is readily seen by separating variables or

using another method. However, if we introduce random noise to the system, say, by replacing k

with k + αBt, then the equation to solve is

dXt = kXt dt+ αXt dBt (4)

where the derivative was found by using equation (1). The solution to equation (4) is obtained by

2



writing
dXt

Xt

= k dt+ α dBt

and then integrating both sides on the interval [0, t]. Thus we obtain

∫ t

0

dXs

Xs

ds = kt+ αBt.

To evaluate the integral on the left, consider the computation of the differential d(lnXt) by the Ito

lemma. Eventually this yields the solution

Xt = X0 exp

((
k − 1

2
α2

)
t+ αBt

)
.

While equation (4) could be easily solved by mimicking methods for ordinary differential equa-

tions, not all stochastic differential equations can be analytically solved. To determine the behavior

of solutions to equations, such as the trajectory of the mean, the equation can be numerically solved

over a large number of runs. The method used was devised by Gisiro Maruyama in his 1951 pa-

per [3], and it builds on the usual forward Euler method for ordinary differential equations. The

differential equation
dx

dt
= f(t, x)

subject to the initial condition x(0) = x0 can be numerically solved via the iterative scheme

x(tn) = xn−1 + hf(tn, x(tn)) (5)

where the step size is chosen as h = tn − tn−1. We assume this step size is uniform. We apply this

to a stochastic differential equation

dXt = u(Xt) dt+ v(Xt) dBt (6)

in the following manner, adapted from Kloeden and Platen [1]: replace t by the increment t+h, and
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approximate the differentials by writing dXt ≈ 1
h
(Xt+h −Xt) and dBt ≈ 1

h
(Bt+h −Bt). Then the

continuous time process in equation (6) can be approximated by the discrete-time Markov chain

Yt by the iteration

Yt+h = Yt + hu(Yt) + v(Yt) (Bt+h −Bt) (7)

subject to the initial condition Y0 = X0. While there are stability and convergence considerations,

they will be ignored in this paper.

To demonstrate the utility of the Euler-Maruyama method, consider the equation

dXt = −0.8Xt dt+ dBt (8)

subject to the initial condition equation X0 = 1. Equation (8) can be solved analytically as follows:

multiply by the integrating factor e0.8t to yield

e0.8tdXt = −0.8Xte
0.8t dt+ e0.8t dBt

which, after rearranging and using the product rule, gives

d
(
Xte

0.8t
)
= e0.8t dBt.

Finally, after integrating both sides on [0, t], the solution is

Xt = e−0.8t

(
X0 +

∫ t

0

e0.8s dBs

)
. (9)

The solution obtained in equation (9) will be the basis of comparison against the numerical esti-

mated obtained by the iterations in equation (7), where u(Xt) = −0.8Xt and v(Xt) = 1. The simu-

lations are conducted via Python, where h ∈ {0.1, 0.02, 0.01, 0.005, 0.002, 0.001, 0.0005, 0.0002}.

For each step size, 1000 sample paths are generated, and the plots of the mean with a 95% confi-

dence interval are generated, along with a cumulative distribution of the final value and the margin
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Table 1: Summary statistics of absolute error.

Step size, h Mean absolute error Standard deviation of absolute error
0.1 0.521444 0.446461

0.02 0.502813 0.421262
0.01 0.510874 0.415863

0.005 0.539743 0.418615
0.002 0.513387 0.413464
0.001 0.515804 0.420624

0.0005 0.502596 0.406794
0.0002 0.511967 0.415433

of error of the confidence interval. The mean absolute error and its standard deviation are sum-

marized in table 1. Select plots are shown in figures 1, 2, 3, and 4. Observe that the confidence

intervals increase as the simulations move forward, and finer step sizes shrink the rate at which the

margin of error increases. One can determine the approximate rate by repeating the trials numerous

times (perhaps 1000 runs of 1000 sample paths each). Estimates of the errors in different norms

can also be made.

Stochastic differential equations serve many purposes in mathematical biology, quantum me-

chanics, and quantitative finance. Although the Euler-Maruyama method is simple to implement,

it can give a big picture of the behavior of the true solution in expectation. As with numeri-

cal schemes for ordinary and partial differential equations, certain applications may benefit from

adaptive methods, stability considerations, and extensions to systems of several equations (perhaps

even with multiple Brownian motions).
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Figure 1: Plots for the step size h = 0.1.

Figure 2: Plots for the step size h = 0.005.

Figure 3: Plots for the step size h = 0.001.

Figure 4: Plots for the step size h = 0.0002.
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